سبيكة · أُشابة · خَلِيْطَة · سبِيْكة · Alloy
السبيكة أو الأشابة أو الخليطة اتحاد كلي أو جزيء بين عنصرين كيميائيين أو أكثر مع بعضهما البعض على أن يكون أحدهما فلزا.



















合金









alloy · metal · Alloy metal · Alloy Metals · Alloy of metal
A mixture containing two or more metallic elements or metallic and nonmetallic elements usually fused together or dissolving into each other when molten
More definitions
alliage · alliage métallique · alliages · métal (astronomie) · Alliages métalliques
Un alliage est la combinaison d'un élément métallique avec un ou plusieurs métaux par fusion.














Legierung · Dreistofflegierung · Eisenlegierung · Feste Lösung · Gusslegierung
Eine Legierung ist in der Metallurgie ein makroskopisch homogener metallischer Werkstoff aus mindestens zwei Elementen, von denen mindestens eins ein Metall ist und die gemeinsam das metalltypische Merkmal der Metallbindung aufweisen.
More definitions











κράμα
Ομογενές μείγμα το οποίο προέρχεται από τη σύντηξη δύο ή περισσότερων μετάλλων ή ενός μετάλλου και μιας άλλης ουσίας
More definitions


























סגסוגת · מסג · נתך
סגסוגת, מֶסֶג או נתך היא שילוב של שני יסודות או יותר, אשר לפחות אחד מהם הוא מתכת, וגם תוצאת השילוב היא בעלת תכונות מתכתיות, ומתאפיינת בקשר מתכתי.























मिश्र धातु · मिश्रातु · मिश्र धातुओं · मिश्रधातु · मिश्रित धातु
दो या अधिक धात्विक तत्वों के आंशिक या पूर्ण ठोस-विलयन को मिश्रातु या मिश्र धातु कहते हैं। इस्पात एक मिश्र धातु है। प्रायः मिश्र धातुओं के गुण उस मिश्रधातु को बनाने वाले संघटकों के गुणों से भिन्न होते हैं। इस्पात, लोहे की अपेक्षा अधिक मजबूत होता है। काँसा, पीतल, टाँका आदि मिश्रातु हैं। == परिचय == मिश्रधातु व्यापक रूप में एक ऐसा शब्द है जिसका प्रयोग किसी भी धात्विक वस्तु के लिये होता है, बशर्ते वह रासायनिक तत्व न हो। मिश्रधातु बनाने की कला अति प्राचीन है। सत्य तो यह है कि काँसे का महत्व एक युग में इतना अधिक था कि मानव सभ्यता के विकास के उस युग का नाम ही 'कांस्य युग' पड़ गया है। यद्यपि शुद्ध धातुओं के कई उपयोगी गुण हैं, जैसे ऊष्मा और विद्युत् की सुचालकता, तथापि यांत्रिक और निर्माण संबंधी कार्यों में साधारणतया शुद्ध धातुएँ उपयोग में नहीं लाई जातीं, क्योंकि इनमें आवश्यक मजबूती नहीं होती। धातु को अधिक मजबूत बनाने की सबसे महत्वपूर्ण विधि धातुमिश्रण है। इस दिशा में 19वीं शताब्दी में बहुत अधिक प्रयास हुआ, उसी का फल है कि अनेक उपयोगी कार्यों के लिये आज पाँच हजार से भी अधिक मिश्रधातुएँ उपलब्ध हैं और नई मिश्रधातुएँ तैयार करने के लिये नित्य नए नए प्रयोग किए जा रहे हैं। आज किसी विशेष उपयोग के लिये इच्छित गुणोंवाली मिश्रधातुएँ बनाई जाती है। धातुएँ जब किसी सामान्य विलयन, जैसे अम्ल, में घुलती है तब वे अपने धात्विक गुणों को छोड़ देती हैं और साधारणतया लवण बनाती हैं, किंतु पिघलाने पर जब वे परस्पर घुलती हैं तब वे अपने धात्विक गुणों के सहित रहती हैं। धातुओं के ऐसे ठोस विलयन को मिश्रधातु कहते हैं। अनेक मिश्रधातुओं में अधातुएँ भी अल्प मात्रा में होती हैं, किंतु संपूर्ण का गुण धात्विक रहता है। अत: 1939 ई0 में अमरीका वस्तु परीक्षक परिषद् ने मिश्रधातु की निम्नलिखित परिभाषा की- मिश्रधातु वह वस्तु है जिसमें धातु के सब गुण होते हैं। इसमें दो या दो से अधिक धातुएँ, या धातु और अधातु होती है, जो पिघली हुई दशा में एक दूसरे से पूर्ण रूप से घुली रहती हैं और ठोस होने पर स्पष्ट परतों में अलग नहीं होती।"प्रारंभ में मिश्रधातु का अधिकतम उपयोग सिक्कों और आभूषणों के बनाने में होता था। ताँबे के सिक्कों में ताँबा, टिन और जस्ता क्रमश: 95/4 तथा 1 प्रतिशत रहते हैं। सन् 1920 तक इंग्लैंड में चाँदी के सिक्के, 'स्टर्लिंग' चाँदी के बनाए जाते थे, जिसमें चाँदी और ताँबा क्रमश: 92.5 और 7.5 प्रतिशत होते थे। अमरीका में चाँदी के सभी सिक्कों में चाँदी और ताँबा क्रमश: 90 तथा 10 प्रतिशत होते हैं। इंग्लैंड के सोने के सिक्कें में सोना और ताँबा क्रमश: 91.67 और 8.33 प्रतिशत होते हैं और अमरीका के सोने के सिक्कों में सोना 90 प्रतिशत तथा शेष अन्य धातुएँ, विशेषकर ताँबा रहता है। प्लैटिनयम, सोना तथा चाँदी के आभूषणों के रंगो में सुंदरता लाने के लिये उनको कठोर, मजबूत तथा टिकाऊ बनाने के लिये, या उन्हें सस्ते मूल्यों में विक्रय के लिये दूसरी धातुओं के साथ मिलाकर काम में लाते हैं। यह निश्चय करना कि मिश्रधातुएँ साधारण मिश्रण हैं या रासायनिक यौगिक, एक जटिल समस्या है। कुछ अर्थों में ये रासायनिक यौगिक हैं, क्योंकि जब सोडियम सरस बनाया जाता है, तब सोडियम के हर एक टुकड़े को पार में डालने से प्रकाश की तीव्र ज्वाला निकलती है और पारा गरम हो जाता है, यह यौगिक बनने का लक्षण है। इसी प्रकार पिघलते हुए सोने में जब ऐल्युमिनियम धातु का एक टुकड़ा डालते हैं, तब इतनी अधिक ऊष्मा उत्पन्न होती है कि संपूर्ण पिघली हुई धातु उज्जवल प्रकाशमय हो जाती है। अनेक मिश्र धातुओं का रंग अपने अवयव धातुओं के रंगों से बिल्कुल भिन्न होता है। उदाहरणार्थ, चाँदी और जस्ता दोना श्वेत रंग के होते हैं, किंतु इनसे जो मिश्रधातु बनती है उसका रंग अति सुंदर गुलाबी होता है। सोना पीला और ऐल्युमीनियम श्वेत होता है, किंतु इनकी मिश्रधातु का रंग अति चमकीला नीललोहित होता है। यह गुण भी यौगिकों का है। मिश्रधातुओं के गलनांक निकालने पर ज्ञात हुआ है कि मिश्र धातुओं का व्यवहार दो प्रकार का है: कुछ मिश्रधातुओं का गलनांक जैसे जैसे किसी अवयव धातु की मात्रा बदलती हैं वैसे-वैसे बदलता है, यह मिश्रण का गुण है और कुछ मिश्रधातुओं का गलनांक एक स्थिर ताप होता है, जो प्रकट करता है कि मिश्रधातुएँ यौगिक हैं। मिश्रधातुओं के भौतिक तथा रासायनिक गुण अपनी अवयव धातुओं के गुणों से भिन्न होते हैं और मिश्रधातुओं के गुण किसी भी प्रकार से अवयव धातुओं के गुणों के माध्य नहीं होते। यह भिन्नता इस कारण से है कि जब धातुओं को एक साथ पिघलाते हैं, तब वे कितने ही अंतराधातुक यौगिक तथा ठोस विलयन बनाती हैं। मिश्रधातु का घनत्व अपनी अवयव-धातुओं के माध्य घनत्व से कम या अधिक हो सकता है। कुछ मिश्रधातुओं का रंग अपनी अवयव धातुओं के रंगों से बिल्कुल ही भिन्न होता है। ये अपनी अवयव धातुओं से कठोरतर, किंतु कम लचीली तथा घातवर्घ्य और अधिक भंगुर होती हैं। मिश्रधातुओं का गलनांक सर्वदा अधिकतम ताप पर पिघलनेवाली अवयवधातु के गलनांक से भी कम होता है। और प्राय: न्यूनतम ताप पर पिघलनेवाली अवयव धातु के गलनांक से भी कम होता है। उदाहरणार्थ, एक मिश्रधातु, जिसमें सीसा, टिन, बिस्मथ तथा कैडमियम हैं, 75˚सें0 पर गलती है, जब कि न्यूनतम ताप पर पिघलने वाली अवयव-धातु, टिन का गलनांक 232˚ सें0 है। ये सब वे गुण हैं जिनके कारण मिश्रधातुएँ शुद्ध धातुओं से अधिक मूल्यवान हो जाती हैं तथा उद्योग में अधिक उपयोगी सिद्ध होती हैं। == वर्गीकरण == ऊपर वर्णित फलों द्वारा तथा सूक्ष्मदर्शी, एक्स-किरण वर्णक्रम मापी, ऊष्मीय तथा रासायनिक विश्लेषण और दूसरे भौतिक परीक्षणों द्वारा मिश्रधातओं के संगठन तथा क्रिस्टलीय रचना के विस्तृत अध्ययन के परिणामस्वरूप, मिश्रधातुओं को तीन श्रेणियों में रखा गया है। यह विभाजन मिश्रधातुओं में अवयव धातुओं के परमाणुओं का समूह किस प्रकार से संगठित है, उसके आधार पर किया गया है। ये तीन श्रेणियाँ निम्नलिखित हैं: === समान्य मिश्रण === इस प्रकार की मिश्रधातुओं में अवयव धातुएँ जब पिघली हुई होती हैं, तब वे एक दूसरे में घुली हुई रहती हैं, किंतु ठोस होने पर धातुओं के क्रिस्टल अलग-अलग हो जाते हैं, अर्थात् धातुएँ परस्पर अविलेय हैं। इस प्रकार मिश्रधातु प्रत्येक अवयव धातु के शुद्ध क्रिस्टल का मिश्रण होती है और ठंडा करने पर कोई एक अवयव धातु ठोस रूप में पृथक् हो जाती है। उदाहरणार्थ, एक तरल मिश्रधातु, जिसमें मात्रानुसार 10 भाग सीसा और 90 भाग टिन होते हैं, जब ठंडी की जाती है तब शुद्ध टिन के क्रिस्टल प्रथम उसी प्रकार से पृथक् होते हैं जिस प्रकार शुद्ध हिम के क्रिस्टल चीनी के तनु विलयन में से ठंडा करने पर पृथक् होते हैं। जिस ताप पर टिन के क्रिस्टल पृथक होना प्रारंभ करते है, वह ताप शुद्ध टिन के गलनांक से कम होता है। टिन के गलनांक को जब उसमें सीसा घुला रहता है, ज्ञात कर सीसे का अणुभार उसी नियम द्वारा निकालते हैं जिस नियम से पानी में घुली वस्तओं का अणुभार निकालते हैं। इस विधि से उन कई धातुओं का अणुभार निकाला गया है, जो तनुघात्विक विलयन में अलग परमाणु के रूप में रहती है। सीसा-ऐंटीमनी मिश्रधातु मिश्रण श्रेणी की है। ऐंटीमनी भंगुर होता है और सीसा मुलायम। मुद्रण धातु सीसी, ऐंटीमनी और अत्यंत कम मात्रा में टिन की मिश्रधातु है। इस मिश्रधातु में ऐंटीमनी की कठोरता तो होती है, किंतु यह उसकी तरह भंगुर नहीं होती। === ठोस विलयन === इस प्रकार की मिश्रधातुओं में एक अवयव धातु के परमाणु दूसरी अवयव धातु के क्रिस्टलीय ढाँचे में भली-भाँति बैठ जाते हैं। ठोस विलयन श्रेणी की मिश्रधातुएँ दो भिन्न प्रकार की होती है: अंतराकाशी मध्य ठोस विलयन-इस प्रकार की मिश्रधातुओं में अधातु तत्त्व, जैसे हाइड्रोजन, कार्बन, नाइट्रोजन और बोरॉन के लघु परमाणु धातु के क्रिस्टलीय ढाँचे के मध्यस्थानों में अपना स्थान बनाते हैं। साधारणत: इससे धातु की रचना में कोई विशेष अंतर नहीं पड़ता है, केवल उसमें थोड़ी सी विकृति आ जाती है। हॉग के अनुसार अंतराकाशी मध्य ठोस विलयन तभी बनेंगे, जब अधातु और धातु के परमाणुओं के अर्द्धव्यासों का अनुपात 0.59 से कम हो। प्रतिस्थापित ठोस विलयन वे होते हैं, जिनमें एक तत्व के परमाणु दूसरे तत्व के क्रिस्टलीय ढाँचे में उन्हीं स्थानों को ग्रहण करते हैं जहाँ पर उनके पहले दूसरे तत्व के परमाणु स्थित थे। इस प्रकार की ठोस विलेयता दोनों तत्वों के परमाणुओं के अर्द्धव्यास सर्वसम, या लगभग समान हों, तो ठोस विलेयता पूर्ण रूप से होगी। उदाहरणार्थ, ताँबे के परमाणु का अर्द्धव्यास 12.75 नैनोमीटर तथा निकल के परमाणु का अर्द्धव्यास 12.43 नैनोमीटर का होता है, अत: इनकी मिश्रधातु में ठोस विलेयता पूर्ण रूप से होगी। अगर अर्द्धव्यासों में अधिक अंतर हो, जैसे टिन और सीसे के परमाणुओं का अर्द्धव्यास क्रमश: 15.0 नैनोमीटर तथा 17.46 नैनोमीटर है, तो केवल सीमित ठोस विलेयता होगी। अगर दोनों धातुओं के ऋणविद्युती अंतर में कमी हो, तो इस प्रकार की ठोस विलेयता और भी अच्छी तरह से होगी। ताँबा-निकल की अनेक मिश्रधातुएँ जिनका महत्वपूर्ण उपयोग है, ठोस विलयन की श्रेणी में आती हैं। उदाहरणार्थ, वे मिश्रधातुएँ जिनसे निकल के सिक्के, राइफल की गोलियों की टोपियाँ और एक तार जिसका वैद्युत प्रतिरोध अधिक होता है, बनता है। कनाडा के बहुत से खनिजों में ताँबा और निकल के सल्फाइड होते हैं, जिनको गलाने से एक मिश्रधातु मिलती है। इसमें निकल और ताँबा क्रमश: 67 और 28 प्रतिशत तथा शेष पाँच प्रतिशत में लोहा और मैंगनीज़ होते हैं। इस मिश्रधातु को मोनेल धातु कहते हैं। यह अधिक तन्य, लचीली तथा संक्षारण प्रतिरोधक होती है। === अंतराधातुक यौगिक === साधारणत: धातुएँ एक दूसरे के साथ संयोग कर यौगिक नहीं बनातीं, किंतु ऊष्मा विश्लेषण द्वारा ज्ञात हुआ है कि धातुएँ एक दूसरे के साथ संयोग कर बहुत अधिक संख्या में यौगिक बनाती हैं। इन यौगिकों का वर्गीय नाम अंतराधातुक यौगिक है। इस प्रकार के सबसे अधिक यौगिक क्षार और क्षारीय मिट्टी की धातुएँ, आवर्त सारणी के विषम उपवर्गो की धातुओं के साथ संयोग करके, बनाती हैं। इन यौगिकों में धातुएँ किस मात्रा में मिली हुई हैं, इसको रासायनिक सूत्रों द्वारा दर्शाते हैं। इन सूत्रों के अध्ययन से ज्ञात होता है कि इस प्रकार के यौगिक संयोजकता के उन सब नियमों का उल्लंघन करते हैं जो धातु तथा अधातु के संयोग से बननेवाले यौगिकों द्वारा प्रतिपादित हुए हैं। उदाहरणार्थ, सोडियम, टिन और सीसा के साथ रासायनिक क्रिया कर निम्नलिखित यौगिक बनाता है : NaSn6, NaSn4, NaSn3, NaSn2,,,,,,, तथा ।अनेक अंतराधातुक यौगिक बहुत स्थायी होते हैं और अपने गलनांक से अधिक ताप पर गरम करने से भी अपनी अवयव धातुओं में विघटित नहीं होते। ये यौगिक तरल अमोनिया में घुलते हैं और इस प्रकार से जो विलयन तैयार होता है, वह वैद्युत् चालक होता है। जब इनका वैद्युत अपघटन किया जाता है, तब एक अवयव धातु, जो दूसरी की अपेक्षा न्यून धनविद्युती होती है, धनाग्र पर जमती है और दूसरी ऋणाग्र पर। अंतराधातुक यौगिक क्यों बनाता है, इसकी अभी तक सैद्धांतिक व्याख्या नहीं हुई। केवल इतना ही प्रतिपादित हो पाया है कि वे धातुएँ, जिनके गुण एक से हैं, एक दूसरे के साथ संयोग नहीं करती हैं। चूँकि इस प्रकार की मिश्रधातुएँ कठोर, भंगुर, बहुत ही कम तन्यशील तथा लचीली होती हैं, अत: इनमें से केवल कुछ ही उपयोगी हैं। == प्रमुख मिश्रधातुएँ == सब मिश्रधातुओं को साधारणतया लौह तथा अलौह मिश्रधातुओं में विभाजित किया गया है। जब मिश्रधातु में लोहा आधार धातु रहता है, तब वह लौह तथा जब आधार धातु कोई अन्य धातु होती है, तब वह अलौह मिश्रधातु कहलाती है। === अलौह मिश्रधातुएँ === कुछ मुख्य अलौह मिश्रधातुएँ निम्नलिखित हैं:a ऐल्युमिनियम-पीतल - इसके संगठन में ताँबा, जस्ता और ऐल्युमिनियम हैं, जो क्रमश: 71-55, 26-42 तथा 1-6 प्रतिशत तक होते हैं। इसका उपयोग पानी के जहाजों तथा वायुयान के नोदकों के निर्माण में होता है। ऐल्युमिनियम-कांसा - इसमें ताँबा 99-89 तथा ऐल्युमिनियम 1-11 प्रतिशत तक होता है। यह अति कठोर तथा संक्षारण अवरोधक होता है। इसके बरतन बनाए जाते हैं। बबिट धातु - इसमें टिन, ऐंटीमनी तथा ताँबा की प्रतिशत मात्रा क्रमश: 89, 7.3 तथा 3.7 होती है। इसका मुख्य उपयोग बॉल बियरिंग बनाने में होता है। घंटा धातु - इसमें ताँबा और टिन की प्रतिशत मात्रा क्रमश: 75-80 और 25-20 तक होती है। इससे घंटे आदि बनाए जाते हैं। पीतल - इसमें ताँबा 73-66 तथा जस्ता 27-34 प्रतिशत तक होता है। इसका उपयोग चादर, नली तथा बरतन बनाने में होता है। कार्बोलाय - यह टंग्स्टन कार्बाइड तथा कोबल्ट की मिश्रधातु है। इससे रगड़ने और काटने वाले यंत्र बनाए जाते हैं। कॉन्स्टैंटेन - इसमें तांबा 60-45, निकल 40-55, मैगनीज 0-1.4, कार्बन 0.1 प्रतिशत तथा शेष लोहा होता है। इसका उपयोग वैद्युत-तापमापक यंत्रों तथा ताप वैद्युत-युग्म बनाने में होता है, क्योंकि यह विद्युत् का प्रबल प्रतिरोधक होता है। डेल्टा धातु - इसमें ताँबा 56-54, जस्ता 40-44, लोहा 0.9-1.3, मैंगनीज 0.8-1.4 और सीसा 0.4-1.8 प्रतिशत तक होता है। यह मृदु इस्पात के समान मजबूत है, किंतु उसकी तरह सरलता से जंग खाकर नष्ट नहीं होती। इसका उपयोग पानी के जहाज बनाने में होता है। डो धातु - इसमें मैग्नीशियम 90-96, ऐल्युमिनियम 10-4 प्रतिशत तक तथा कुछ अंशों में मैंगनीज़ होता है। इसका उपयोग मोटर तथा वायुयान के कुछ हिस्सों को बनाने में होता है। जर्मन सिलवर - इसमें ताँबा 55, जस्ता 25 और निकल 20 प्रतिशत होता है। कुछ वस्तुओं को बनाने में चाँदी के स्थान पर इसका उपयोग करते हैं, क्योंकि इससे बनी वस्तुएँ चाँदी के समान ही होती हैं। हरित स्वर्ण - इसमें सोना, चाँदी और कैडमियम, क्रमश: 75, 11-25 तथा 13-0 प्रतिशत तक, होते हैं। इसके आभूषण बनाए जाते हैं। गन मेटल - इसमें ताँबा 95-71, टिन 0-11, सीसा 0.-13, जस्ता 0-5 तथा लोहा 0-1.4 प्रतिशत तक होता है। इससे बटन, बिल्ले, थालियाँ तथा दाँतीदार चक्र बनाए जाते हैं। मैग्नेलियम - इसमें ऐल्युमिनियम 95-70 प्रतिशत तथा मैग्नीशियम 5-30 प्रतिशत तक होता है। यह मिश्रधातु हल्की होती है। इसका उपयोग विज्ञान संबंधी यंत्रों तथा तुलादंड बनाने में होता है। नाइक्रोम - इसमें निकल 80-54, क्रोमियम 10-22, लोहा 4.8-27 प्रतिशत तक होते हैं। ऊँचे ताप पर इसका संक्षारण नहीं होता तथा इसका वैद्युत प्रतिरोध अधिक होता है। इसका उपयोग ऊष्मक बनाने में होता है। पालौ - इसमें सोना 80 तथा पैलेडियम 20 प्रतिशत होते हैं। मूषा और थाली बनाने में प्लैटिनम के स्थान पर इसका उपयोग किया जाता है। पर्मलॉय - इसमें निकल 78, लोहा 21, कोबल्ट 0.4 प्रतिशत तथा शेष मैगनीज, ताँबा, कार्बन, गंधक और सिलीकन होते हैं। इससे टेलीफोन के तार बनाए जाते हैं। सोल्डर - इसमें सीसा 67 तथा टिन 33 प्रतिशत होते हैं। यह धातु दो धातुओं को आपस में जोड़ने के काम आती है। शॉट धातु - इसमें सीसा 99 तथा आर्सेनिक 1 प्रतिशत होता है। इससे बंदूक की गीली तथा छरें बनाए जाते हैं। टिन की पन्नी - इसमें टिन 88, सीसा 8, ताँबा 4 और ऐंटिमनी 0.5 प्रतिशत होते हैं। यह पन्नी सिगरेट और खाद्य वस्तुओं को सुरक्षित रखने के लिये उनके ऊपर लपेटी जाती है। उड की धातु - यह मिश्रधातु सर्वप्रथम उड ने बनाई थी। इसमें बिस्मथ 50, सीसा 25, टिन 13 और कैडमियम 13 प्रतिशत होते हैं। इसका गलनांक बहुत कम होता है। आग को पानी छिड़क कर बुझानेवाले, स्वचालित यंत्रों में, जो प्लग लगा रहता है वह इस मिश्रधातु का बना होता है। === लोह मिश्रधातुएँ === आधुनिक युग में लौहमिश्र धातुओं का अधिकतम महत्व है। इसके अंतर्गत इस्पात और ढलवाँ लोहा तथा पिटवाँ लोहा लोहा आते हैं। जब शुद्ध गलित लोहे को ठंडा करते हैं, तब 1,535˚ सें0 पर तरल लोहे से क्रिस्टलीय रूप में इस प्रकार का लोहा निकलता है। इसको डेल्टा लोहा कहते हैं। यह लोहा दूसरे प्रकार के क्रिस्टल में 1,404˚ सें पर परिवर्तित हो जाता है। इसको गामा लोहा कहते हैं। यह 900˚सें0 के ऊपर स्थायी रहता है और इस ताप पर ऐल्फा लोहा में परिवर्तित हो जाता है, जो साधारण ताप पर स्थायी रहता है। लोहा और कार्बन का एक यौगिक बनता है, जिसमें कार्बन की प्रतिशत मात्रा 6.67 होती है। इस मिश्रधातु को सेमेंटाइट कहते हैं। यह मिश्रधातु गामा लोहा के साथ ठोस विलयन बनाती है, जिसको ऑस्टेनाइट कहते हैं। इस्पात में कार्बन की मात्रा 0.5 से लेकर 1.5 प्रतिशत तक रहती है। जब गलित इस्पात ठोस होता है, तब ऑस्टेनाइट के ठोस विलयन-क्रिस्टल प्राप्त होते हैं। ये क्रिस्टल मुलायम होते हैं और इनसे चद्दरे, छड़ तथा तार सरलता से बनाए जाते हैं। मोटर गाड़ियों के विकास के साथ साथ वे तत्व, जिनको केवल रसायनज्ञ ही जानते थे, इस्पात के साथ मिश्रधातु बनाने के उपयोग में लाए गए। ये इस्पात मिश्रधातुएँ मोटर गाड़ियों के इंजिनों के हिस्से बनाने तथा ये हिस्से जिन यंत्रों से बनाए जाते हैं, उनको बनाने में काम आती हैं। उदाहरणार्थ, मैंगनीज से इस्पात की मजबूती बढ़ती है और यह ऑक्सीजन और गंधक को, जो इस्पात को दुर्बल तथा भंगुर बना देते हैं, इस्पात में से अलग कर देता है। निकल इस्पात की मजबूती को बिना उसकी भंगुरता बढ़ाए बढ़ा देता है। क्रोमियम की कम मात्रा इस्पात को कठोरता प्रदान करती है और इसकी अधिक मात्रा इस्पात को संक्षारण से बचाती है। स्टेनलेस स्टील में क्रोमियम होता है। वैनेडियम-इस्पात आघातसह होता है और मोलिब्डेनम्-इस्पात अधिक कठोर तथा ऊष्मा अवरोधक होता है। इस्पात-मिश्रधातुएँ केवल कार्बन-इस्पात से अधिक महँगी पड़ती हैं। == महत्वपूर्ण मिश्रित धातुएँ एवं उनके संघटक == मिश्रित धातु ———– संघटक1.





















lega · lega metallica · leghe metalliche
Miscela di due o più metalli fusi
More definitions


















合金 · アロイ










сплав · сплавы
Сплав — макроскопически однородный металлический материал, состоящий из смеси двух или большего числа химических элементов с преобладанием металлических компонентов.
















aleación · metal · aleaciones · aleacion
Una aleación es una mezcla homogénea de dos o más elementos, de los cuales al menos uno debe ser un metal.
















