ديناميكا · علم التحريك · حَرَاكِيَّة · حَرَكِيَّة · دِينَامِيكَا
علم التحريك أو الدِّينَامِيكَا الحَرَكِيَّة أو الحَرَاكِيَّة أو الدِّينَامِيَّة هي إحدى فروع الرياضيات التطبيقية التي تختص بدراسة القوى والعزوم وتأثيرها علي حركة الأجسام أي الحركة ومسبباتها.
动力学 · 动力学 · 动态学 · 动态学
dynamics · kinetics · Dynamicist
The branch of mechanics concerned with the forces that cause motions of bodies
More definitions
dynamique (physique) · cinétique · mécanique dynamique
La dynamique est une discipline de la mécanique classique qui étudie les corps en mouvement sous l'influence des actions mécaniques qui leur sont appliquées.
More definitions
Dynamik (Physik) · Kinetik · Dynamometrie
Die Dynamik ist das Teilgebiet der Mechanik, das sich mit der Wirkung von Kräften befasst.
δυναμική
(φυσική) κλάδος της μηχανικής ο οποίος εξετάζει τα αίτια που προκαλούν την κίνηση των σωμάτων και τους νόμους που τη διέπουν
More definitions
דינמיקה (מכניקה)
गति विज्ञान · गतिविज्ञान
गति विज्ञान अनुप्रयुक्त गणित की यह शाखा पिंडों की गति से तथा इन गतियों को नियमित करनेवाले बलों से संबद्ध है। गतिविज्ञान को दो भागों में अंतिर्विभक्त किया जा सकता है। पहला शुद्धगतिकी, जिसमें माप तथा यथातथ्य चित्रण की दृष्टि से गति का अध्ययन किया जाता है, तथा दूसरा बलगतिकी अथवा वास्तविक गति विज्ञान, जो कारणों अथवा गतिनियमों से संबद्ध है। व्यापक दृष्टि से दोनों दृष्टिकोण संभव हैं। पहला गतिविज्ञान को ऐसे विज्ञान के रूप में प्रस्तुत करता है जिसका निर्माण परीक्षण की प्रक्रियाओं के आधार पर तथ्योपस्थापन द्वारा हुआ है। तदनुसार गति विज्ञान में गतिनियम यूक्लिड के स्वयंसिद्धों का स्थान ग्रहण करते हैं। दावा यह है कि प्रयोगों द्वारा इन नियमों की परीक्षा की जा सकती है, परंतु यह भी निश्चित है कि व्यावहारिक कठिनाइयों के कारण कोई सैद्धांतिक नियम यथातथ्य रूप में प्रकाशित नहीं हो पाता है। इन नियमों को प्रमाणित कर सकने में व्यावहारिक कठिनाइयों के अतिरिक्त कुछ तर्कविषयक बाधाएँ भी हैं, जो इस स्थिति को दूषित अथवा त्रुटिपूर्ण बना देती हैं। इन कठिनाइयों का परिहार किया जा सकता है, यदि हम दूसरा दृष्टिकोण अपनाएँ। उक्त दृष्टिकोण के अनुसार गतिविज्ञान शुद्ध अमूर्त विज्ञान है, जिसके समस्त नियम कुछ आधारभूत कल्पनाओं से निकाल जा सकते हैं। == बल == बल वह प्रभाव है जो किसी पिण्ड में त्वरण उत्पन्न करता है। बल लगने के कारण वस्तु की गति की दशा में परिवर्तन हो जाता है। == गति के नियम == == गतिविज्ञान का ध्येय == गतिविज्ञान की सीधी समस्या : किसी पिण्ड पर लगने वाले बल ज्ञात हैं ; उस पिण्ड के गति की प्रकृति ज्ञात करना।गतिविज्ञान की व्युत्क्रम समस्या : विभिन्न समयों पर वस्तु की वांछित स्थिति दी हुई है ; उस पर लगाये जाने वाले बलों की गणना करना। == पिण्डों पर लगने वाले प्रमुख बलों के सूत्र == गुरुत्व बल F T = G m 1 m 2 r 2 {\displaystyle F_{T}={Gm_{1}m_{2} \over r^{2}}} सदिश रूप में: F T → = G m 1 m 2 | r 2 → − r 1 → | 3 {\displaystyle {\overrightarrow {F_{T}}}=G{\frac {m_{1}m_{2}}{|{\vec {r_{2}}}-{\vec {r_{1}}}|^{3}}}{}} पृथ्वी की सतह के निकट: F T → = m g → {\displaystyle {\overrightarrow {F_{T}}}=m{\vec {g}}} घर्षण बल: F f = μ N {\displaystyle F_{f}=\mu N} उत्प्लावन बल: F A = ρ g V {\displaystyle F_{A}=\rho gV} == कई एक पिंडों की समस्या == तीन पिंडों की गतिकी समस्या की जटिलता का आभास तब हुआ जब सन् १७४३-५० में आलेक्सी क्लेरो ने सूर्य और पृथ्वी के आकर्षण के वशीभूत चंद्रमा की गति पर अपनी खोजें की और १८ वीं शताब्दी के महान् गणितज्ञ ग्रहों की क्षुब्ध गतियों और चाद्र सिद्धांत की गवेषणा में बहुत समय तक जुटे रहे। इसके फलस्वरूप वैश्लेषिक गतिविज्ञान जैसे बृहत् विषय का विकास हुआ, जिसमें अब प्राक्षेपिकी, खगोलीय बलविज्ञान, कण गतिविज्ञान, दृढ़ गतिविज्ञान और कंपन सिद्धांत का समावेश है। संघटन में आकुंचन और प्रभरण की जटिल प्रक्रियाओं की छानबीन से बचने के लिए यह सरलकारी कल्पना की गई है कि संघटनकारी पिंडों में क्षणिक संपर्क होता है और गति की एक व्यवस्था से दूसरी में परिवर्तन असतत होता है। इस कल्पना पर जब न्यूटन ने अपने गति नियमों को लगाया तो ऐसे समीकरण प्राप्त हुए जिनमें केवल अवस्थितत्वपद विद्यमान थे और जो यह प्रकट करते थे कि प्रत्येक पिंड संघटन से पूर्व और उसके पश्चात् एक समान वेग से चलता है। == कण गतिविज्ञान == इस विषय में यह सरलकारी कल्पना है कि कम से कम एक पिंड अन्य पिंडों में से एक की अपेक्षा इतना छोटा है कि उसे द्रव्यबिंदु, अर्थात् कण, माना जा सकता है। गुरूत्वाकर्षण के प्रभाव में प्रक्षेप्य की गति इस कल्पना का एक महत्वपूर्ण उदाहरण है। इसका दूसरा उदाहरण तब मिला जब केप्लर ने १७ वीं शताब्दी के आरंभ में ग्रहीय गति के तीन नियम खोजे और न्यूटन ने अपने गति समीकरणों को हल कर उनकी व्युत्पत्ति दी। वस्तुतः उसका क्षेत्रफल का नियम अब 'कोणीय संवेग अविनाशिता के सिद्धांत' के नाम से सुविदित है। दोलक गति की समस्या एक दूसरी महत्वपूर्ण समस्या थी और हाइगन ने निरोध को लगाकर जब गति को वस्तुत: समकालिक बनाया तो गणितज्ञों द्वारा गुरूत्व के वशीभूत कण की निरूद्ध गति के अध्ययन का सूत्रपात्र हुआ। निदेशक के रूप में पृष्ठों और चक्रज आदि वक्रो का विशेष अध्ययन किया गया। चक्रज ही द्रुततम उतार का वक्र निकला। इन खोजों के फलस्वरूप गणितज्ञों की रूचि लघुतम की समस्याओं की ओर हुई और फ़र्मा ने लघुतम समय के सिद्धांत का प्रतिपादन किया तथा मोपरट्वी ने लघुतम क्रिया के सिद्धांत का। इन्हें आयलर और लाग्रांज ने विशद रूप से समझा और अंत में हैमिल्टन ने एक विशद रूप से समझा और अंत में हैमिल्टन ने एक विशालतर विधि में इनका समावेश किया। == कंपन सिद्धांत == तीसरी महत्वपूर्ण सरलकारी कल्पना ब्रुक टेलर ने सन् १७१५ के लगभग यह की कि तनी हुई डोर के कंपन का विवेचन लघु-दोलन-सिद्धांत द्वारा किया जा सकता है। इस विधि से आवर्तगति के लिए उसने एकघात अवकल समीकरण की उद्भावना की, जिसे छोर संबंधी समुचित प्रतिबधा के साथ हल करने पर विभिन्न, संभव कंपनरूप मिलते है। इस विश्लेषण का जाहन बरनुली ने बड़े मन से अध्ययन किया और उसने लघु दोलन के व्यापक सिद्धांत का प्रतिपादन किया। इस उसके बाद उसके पुत्र डेनियल और दो शिष्यों, आयलर तथा मापरट्वी, इन तीनों ने मिलकर विकसित किया। समान अंतरालों पर भारित भारहीन डोर की प्रसिद्ध समस्या कणों की संख्या और कंपन से मुक्त रूपों की सख्या में संबंध स्थापित करने में अत्यंत सहायक सिद्ध हुई। जब डोर एक नियम बिंदु से लटकी हुई ऊर्ध्वाधर स्थिति में कंपन करती है तब मिश्र दोलक बन जाती है और भारों की संख्या अनंत होने पर इसके कंपन भारयुक्त श्रृखंला के हो जाते है। जोज़ेफ लुई लाग्रांज ने सन् १७८८ में लिखित अपनी मिकैनिक ऐनालिटिक में इस समस्या का विस्तृत विवेचन किया है। इसी प्रकार का विश्लेषण ध्वनिक, वैद्युत और यांत्रिक छत्रों के लिये व्यवहृत किया गया है। लघु-दोलन-सिद्धांत का उपयोग इंजनों के लिये कंपन अवमंदकों के अध्ययन में और ईषाओं के ऐंठनात्मक दोलनों के अध्ययन में किया गया है। == अपरिवर्ती गति == सन् १७३८ में डैनिएल बरनुली ने चौथी महत्वपूर्ण सरलकारी कल्पना द्रव्य की अपरिवर्ती गति के अध्ययन में की। धारारेखा के अनुदिश वेग, घनत्व और दाब में जो संबंध उसने दिया वह वस्तुत: ऊर्जा अविनाशिता के सिद्धांत की पुनरूक्ति जैसी है। अपरिवर्ती घूर्णनवाले गुरूत्वपूर्ण द्रव का व्यवहार मैकलोरिन के ज्वार-भाटा-सिद्धांत में और क्लेरो के पृथ्वी के आकार विषयक सिद्धांतों में हुआ है। == दृढ़ गतिविज्ञान == सन् १७४३ में बेंजामिन रॉबिज की 'न्यू प्रिंसिपुल्स ऑव गनरी' के प्रकाशन से घूर्णनकारी प्रक्षेप के गतिविज्ञान में रुचि उत्पन्न हुई। तभी डिलैंबर्ट ने अपनी 'ट्रेट डिनैमिक' में आभासी कर्म का सिद्धांत दिया है जो अब तक उसके नाम से प्रसिद्ध है। इसके अनुसार दृढ़ पिंड के प्रत्येक लघु अंश को एक गतियुक्त निकाय माना जाता है, जिसका अपना द्रव्यमान और अपने गतिसमीकरण होते हैं। सभी अंशों के समीकरणों को जोड़ने पर आंतरिक बल कट जाते है और फलत: संपूर्ण पिंड के गतिसमीकरणों में केवल जड़ता के पद और पृष्ठ तथा पिंडबलों के परिणामी विद्यमान रहते हैं। घूर्णनकारी गतिसमीकरणों में निर्देशाक्षों के सापेक्ष जड़ताघूर्ण और निर्देश-समतल-युग्मों के सापेक्ष जड़ता-गुणनफल वाले पद रहते है। मुख्य पक्ष चुनने से ये गुणनफल शून्य हो जाते हैं और तब आयलर समीकरण मिलते है, जिनका उपयोग जलयानु, रेलइंजन, वायुयान और गुब्बारे के गतिविज्ञान में प्रमुख है। कालमापी और घूर्णदर्शी का निर्माण भी इन्ही समीकरणों का परिणाम है। == लाग्रांज समीकरण == लघु दोलन सिद्धांत में वलफलन V को विभव ऊर्जा माना जाता है, जो संतुलन की अवस्था में, जिसमें व्यापकीकृत निर्देशांको Q1, Q2....Qn के मान शून्य लिए जाते हैं, लघुतम और शून्य रहता है। क्षुब्ध अवस्था में V संनिकटतः Q1, Q2....Qn के एक घन द्विघात रूप से निरूपित होता है और गतिज ऊर्जा T व्यापकीकृत निर्देशांको के परिवर्तन में समघात द्विघात रूप होता है। लाग्रांज ने बताया कि व्यापकीकृत निर्देशांकों में गतिसमीकरण वे ही है, जो विचरण कलन द्वारा राशि L=T_V के समय समाकल से प्राप्त की जा सकती हैं। L को गतिज विभव भी कहते हैं। कभी कभी L की महत्वपूर्ण भौतिक सार्थकता होती है। उदाहरणत: क्लैश के द्रव-गति- विज्ञान में विचरण सिद्धांतों पर खोजों में L दाब समाकल है। यदि कण पृष्ठ x = f, y = g, z = h पर चलने को निबद्ध है, तो प्राचलों Q, Q2 को व्यापकीकृत निर्देशांक माना जा सकता है, जिनकी संख्या ३ से घटकर २ रह गई। अब क्योंकि V केवल x, y, z पर आश्रित है और T Q1, Q2 का द्विघात फलन है, जिसमें गुणांक Q1, Q2 पर आश्रित हैं, लांग्राज के समीकरण d d t ∂ L ∂ q ˙ r − ∂ L ∂ q r = 0.
dinamica · cinetica · Dinamico · Legge del moto di Newton · Leggi del moto
La parte della fisica che studia il moto
More definitions
動力学 · ダイナミクス
динамика (физика) · дина́мика
dinámica · cinética · dinamica
La dinámica es la rama de la física que describe la evolución en el tiempo de un sistema físico en relación con los motivos o causas que provocan los cambios de estado físico o estado de movimiento.